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We show that every steady discrete velocity model of the Boltzmann equation 
on the real line, ~ i ' ( d / d x ) f  ~= C~(f), which satisfies an H-theorem and for 
which all ~ r 0, has solutions on the half-line (0, oe ) which take prescribed non- 
negative f~(0) if ~i > 0 and approach a certain manifold of Maxwellians as 
x--* oe. Such solutions give the density distribution in a Knudsen boundary 
layer in the discrete velocity case. 

KEY W O R D S :  Boltzmann equation; steady discrete velocity models; half- 
space problem. 

1. I N T R O D U C T I O N  

The importance of half-space problems for the Boltzmann equation stems 
from their role as boundary layer solutions associated with more com- 
plicated situations where a significant change in the boundary data occurs 
in a distance on the order of a mean free path. (13) Such changes are impor- 
tant in the kinetic boundary layers, which are different from the usual 
viscous boundary layers and have the thickness of a few mean free paths; 
these layers are sometimes called the Knudsen layers. (6,7) Formally, it can 
be seen that if the boundary of a domain is flat or if it has a radius of 
curvature much larger than the mean free path, then the behavior of the 
distribution in the Knudsen layer can be found by solving the Boltzmann 
equation in a half-space. 

The first appearance of half-space problems in the kinetic theory of 
gases of classical molecules, the ones Boltzmann had in mind when he 
derived his equation, dates back to 1949 and is due to Kramers. (2~ A 
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systematic analysis of perturbation procedures led Grad (~8~ to recognize the 
existence and importance of the Knudsen layers. The need for such 
solutions seems to have been most urgent in problems of linear transport, 
such as those occurring in stellar or planetary atmospheres (~4) and in 
neutron transport. (~6) Such linear problems have been studied 
extensively.~.2.4.6 H.~9) Specifically, Beals ~4) and Greenberg and van der 
Mee (~9) made use of operator techniques to work on abstract versions of 
the linearized Boltzmann equation, while Bardos et al. ~2) adopted a more 
elementary and direct approach in the case of hard spheres. Their treat- 
ment was extended by Cercignani to hard cutoff potentials. (1~) A nonlinear 
treatment of a perturbation from equilibrium has been announced. (3) 

In this paper, the existence question for fully nonlinear half-space 
problems is studied in the simpler case of discrete velocity models, in order 
to avoid a technical difficulty connected with small velocity components 
perpendicular to the plane bounding the half-space. The rationale for this is 
given in the study (12) of such models for boundary value problems in a slab. 

The plan of the paper is as follows. In Section 2, we introduce the 
stationary discrete velocity models for the one-dimensional geometry which 
is relevant in the half-space situation, and we formulate the problem. The 
notation for the density and the invariant density, momentum, and energy 
fluxes is given, and an H-theorem is discussed. Section 3 contains a short 
presentation and discussion of the Maxwellian equilibrium solutions in the 
continuous case. An auxiliary result for a boundary value problem in a slab 
is proved in Section 4. The main theorem is formulated and proved in 
Section 5. 

2. THE MODELS,  THE PROBLEM,  A N D  S O M E  NOTATION 

We are concerned with discrete velocity models of the Boltzmann 
equation. The particles can only have one of finitely many velocities 
vl, ..., v, e ~3. The x, y, and z components of vi are denoted by ~i, q~, and 
~e. The particles moving with velocity vi at time t and at the space point 
r = (x, y, z) are described by a density distribution function f~ evaluated at 
(t, x, y, z). In the steady half-space case, thef~ depend only on x and satisfy 
the system of equations 

.__d f i =  ~ dx C~(f)' i= 1,..., n (2.1) 

Here, f = (f~ ..... f" )  is the vector function given by all the densities, and the 
collision operator Ci(f)  has the form 

Ci(f)  = ~ A ~ t ( f k f t - - f f  j) (2.2) 
j ,k , l  
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The transition rates A~t are assumed to satisfy the usual identities A~t= 
A~=Aj/~=A~ t for all i, j, k, l. In particular, the model satisfies an 
H-theorem. Our basic assumption in this paper is that ~i ~ 0  for all 
i =  1 ..... n. Given this assumption, we look for nonnegative solutions f of 
(2.1) on E+ satisfying the following boundary conditions: 

For ~i > 0, we prescribe f~(0) = ~ >~ 0 (2.3) 

We assume that at least one a~ is strictly positive 

Let m = ( m  1 ..... m") be a (Maxwellian) equilibrium 
solution of (2.1); then we require that for some such m, 

lira f i(x) = m ~ (2.4) 
x ~ o o  

The motivation for the boundary condition (2.4) is that at the boundary 
between the Knudsen and the viscous boundary layer, the gas should be in 
equilibrium, and only fluid dynamics is necessary to deal with the viscous 
layer. 

Here m is a Maxwellian equilibrium of (2.1) if and only if Ci(m)= 0 
for all i. As in classical kinetic theory, a Maxwellian state is completely 
determined by its summational invariants, ~s'17~ which, for the full 
Boltzmann equation, are just mass, momentum, and energy. We assume 
that the discrete models considered here are all such that mass, momen- 
tum, and energy are conserved in the time-dependent case, i.e., the collision 
terms Ci(f) must satisfy 

Ci(f) = 0 (2.5) 
i 

v~Ci(f) = 0 (2.6) 
i 

vZC~(f) = 0 (2.7) 
i 

Note that (2.6) is a vector identity. Depending on the particular model 
under consideration, there are sometimes additional collision invariants 
(see ref. 17 for a general discussion). 

Equations (2.5)-(2.7) imply that the fluxes 

j := j ( f ) : = ~  ~ifi(x) (2.8) 
i 

p := p( f )  := ~ ~v,f~(x) (2.9) 
i 

e :-- e( f ) := ~ ~iv2ifi(x) (2.10) 
i 
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are independent of x. Here p is of course a vector, and we denote its com- 
ponents by (Pl,  P2, P3). For  j, p, and e fixed, we denote by M the manifold 
of all Maxwellians having these fluxes. Note that M may consist of only a 
finite number of points; this is true, for example, in the continuous case 
when j >  0 (see Section 3). 

Frequently we consider quantities which involve only velocities whose 
x component has just one sign. For  example, p + (x) := Z + f i ( x )  is defined 
as the sum over all particle densities for which ~i >0.  Analogously, we 
define p - ( x ) ,  j+(x ) ,  p~-(x), etc. For  j - ( x ) ,  we choose the definition 
j - ( x )  = Z / -  [~i[ f i (x) ,  i.e., we have 

j (x )  = j + (x) - j - (x) 

There is an analog to the Boltzmann H-theorem in the steady case. 
Let h(y) = y In y for y > 0, and h(y) = 0 for y = 0, and define the "H-flux" 
(or "negative entropy flux") by 

/ ~ [ f ] ( x )  = Z ~h( f i ( x ) )  (2.11) 
i 

If f is a solution of (2.1), it follows as usual that 

d ~ 
dx H [ f ] ( x )  <~ 0 

with equality at some x if and only i f f f J ( x )  = f~rk(x) for all i, j, k, l for 
which A~Ir i.e., if and only if f is a Maxwellian at x. 

Our analysis will be done in the space Cb of bounded continuous 
functions on [0, ~ ) .  Let Cb, + denote the cone of positive functions in Cb, 
and (Cb) n the n-fold Cartesian product of Cb with itself. 

3. M A X W E L L I A N S  

The quantities j, p, and e are invariants of Eq. (2.1). However, the data 
at the wall x = 0 are insufficient to predict the values of j, p, and e. Two 
questions arise naturally in connection with our problem: Can we prescribe 
the values of j, p, and e (or at least some of them)? And do the values of j, 
p, and e determine the Maxwellian uniquely? 

In this section, we give a partial answer to the first question, and a 
complete answer to the second question in the case of the full Boltzmann 
equation. 

An elementary estimate shows that it is impossible to prescribe any 
value o f j  at infinity. In fact, for any nonnegative solution f we must have 

j (m) = j ( f )  = j + ( f ) (0 )  -- j -  ( f ) (0)  ~< j + ( f ) (0)  (3.1) 
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and j + ( f ) ( 0 )  is given. This shows that j (m)  must certainly satisfy the 
constraint given by (3.1). Which other constraints j, p, and e must satisfy in 
detail to be admissible as fluxes of the Maxwellian at infinity is a question 
we are unable to answer. 

We now discuss question 2 for the Boltzmann equation. Let 

mu.p,p(v) = p ( T z / f l )  - 3 / 2  exp[  --fl(v -- u) 2 ] 

be the Maxwellian in ~3 with density p and mean velocity u. 
If j, p, and e are given, an easy calculation shows that p,/~, and u must 

satisfy the equations 
}OU 1 = j (3.2) 

p(l/2fl  + u~) = p~ (3.3) 

p(u~ u2) = P2 (3.4) 

p(ulU3)= P3 (3.5) 

pU~(5/2fl + U 2) = e (3.6) 

We distinguish the two cases j---0 and j >  0. For  the case j =  0, we must 
necessarily have ul = 0  (or p =0 ,  but this leads immediately to vacuum). 
Equations (3.2)-(3.6) are then only solvable if also P2 = P3 = e = 0 ,  but 
then u2 and u3 can be chosen arbitrarily. Equation (3.3) now reads p = 
2pl/L For  Pl >0 ,  this establishes a relation between p and/L 

We summarize the result: For  j = P2 --P3 = e = 0, we have a manifold 
of Maxwellians, determined by the parameters/? > 0, u2, and u3 and by the 
relations p = 2 p l / ~  and u~ =0.  In particular, there are infinitely many 
Maxwellians for every p~ > 0. 

The entropy flux f f I [ f ] ( x ) = S ~ f ( x ,  v ) l n f ( x ,  v) dx is easily seen to 
vanish identically on all these Maxwellians. 

The case j >  0 is less degenerate: We easily obtain 

U2 = P2/J, hi3 = P3/J (3.7) 

= p2/2(pp~ _ j2)  (3.8) 

For  the density p we solve a quadratic equation, which has at most two 
real solutions 

5pl + {25p 2 -- 1 6 [ e j -  (p~ + p3Z)] }2/2 
P =  [ j z 2 .2 (3.9) 

2 e~ - (P2+P3)/J ] 

It is clear that the fluxes j, Pi, and e must satisfy certain constraints for the 
Maxwellians to exist, because nonreal solutions are not admissible from a 
physical point of view. 
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The important conclusion for our purpose is this: For  j =  P2 = P3 = 
e = 0 and Pl > 0, there is a manifold of Maxwellians with these fluxes j, p~, 
and e. F o r j  > 0 and Pl ,  P2, P3, and e such that there are at all Maxwellians 
having these fluxes, we observe that there are at most two. 

This feature of one-dimensional flows is well known in the context of 
the theory of shock waves in an ideal fluid. (15) Actually, one of the two 
roots in Eq. (3.9) belongs to a subsonic, the other to a supersonic flow. 
From the definition of the Mach number M (based on the x component of 
the bulk velocity), we have 

M 2 =  u 2 _ j2 
~p/p ~(plp_j2)  (3.10) 

Here P denotes the pressure. An elementary study shows that the root with 
the plus sign from (3.9) satisfies p >>. 8j2/5pl, while the root with the minus 
sign satisfies p <~ 8j2/5p~, and hence M<~ 1 for the first root and M>~ 1 for 
the second. 

From the results of a linearized analysis (11'19) we expect that the root 
for which M >  1 cannot be reached for positive j. We believe that the 
linearized analysis can be used to obtain a rigoros proof of this statement, 
but a detailed discussion of this point is beyond the scope of the present 
paper. 

4. AUXIL IARY RESULTS FOR B O U N D A R Y  
VALUE PROBLEMS IN A SLAB 

In this section, we prepare for the main result by setting up and 
solving auxiliary problems in a finite interval [0, d] .  The problems closely 
resemble problem (B) in ref. 12. 

Choose d > 0  arbitrary but fixed. On [-0, d] ,  we look for solutions of 
the following problems: 

~ i . d  fi(x)=C'(f)(x),  xE(O,d), i=l,...,n (4.1) 

for 4; > 0, f / (0)  = ~i/> 0 (4.2) 

At the right boundary x = d, we impose one of the following two possible 
boundary conditions: 

(i) For  ~i < 0, choose numbers /~i ~> 0 arbitrary but fixed such that 
2 7  #i = 1, and a number ~ ~ [0, 1), and prescribefg(d) implicitly 
by 

[~l f~(d) = tc#~j+(d) (4.3a) 
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(ii) or choose a number t/> 0 which is smaller than or equal to the 
smallest positive ~i. Then prescribe f ( d )  implicitly by 

( t + l ~ ; l ) f ; ( d ) = # ; [ j + ( f ) ( d ) - t p + ( f ) ( d ) ]  if ~, .<0 (4.3b) 

There are many other boundary conditions that we could use for our 
purposes. Let us explain the virtues of (4.3a) and (4.3b), assuming that we 
have a nonnegative bounded solution for each problem (shortly, we will 
show that such solutions exist). 

Condition (4.3a) enables us to calculate 

j ( x )  = j ( d )  = j + (d)  - j - ( d )  

= j + ( d ) - ~ -  [~i[ f ; ( d )  
i 

= j + ( d ) -  ~c ~ # i j + ( d ) = ( 1 - ~ c ) j + ( d )  
i 

Suppose that Cl > 0 is a lower bound and c2 > 0 is an upper bound for all 
the 14;I. This allows us to estimate 

j + (d)  >1 c 1 p + (d) >t c l p ( d )  

Using the invariance of p l, we arrive at 

p(d)  = ~ (1/4;) 2 ~ f ; ( d )  >~ c 2 2 p l ( d )  
i 

= cs >>. c s  - (0) (4.4) 

Summarizing, (4.3a) guarantees that we have a uniform lower bound on 
j(x): 

j ( x )  >1 (1 - ~c) Cl cs - (0) >10 

The condition (4.3b) is such that 

j ( f ) ( d )  = t p ( f ) ( d )  

and from (4.4), we again get a uniform lower bound on j ( x )  for positive t. 
Finally, we remark that condition (4.3b) for t = 0  enforces zero mass flux 
for any solution of (4.1)-(4.3b). 

We now turn to the existence question. 

T h e o r e m  4.1. The problems (4.1)-(4.3a), (4.3b) have bounded, 
nonnegative, and continuous solutions. These solutions are bounded 
independent of d. 
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ProoL The same proof, already given in ref. 12, applies to both 
boundary conditions. For 7 > 0, let 

C~(f) = Ci( f)  + 7P(f) 

The structure of Ci(f)  is such that we can choose 7 > 0 so large that C~ 
maps (Cb, + )n continuously into itself. Once ? is chosen, we keep it fixed. As 
in ref. 12, we define a mapping T: (Cb)n~(Cb,+) n as follows. Take 
g e  ( C y  and solve the problem 

~ .  d f~ + ?f~p(lg[) = C~([gl) (4.5) 

[here Igl =( Ig l l ,  Ig2l ..... Ig'l) with the boundary conditions (4.2) and 
(4.3a) or (4.3b)]. It is easy to see that this problem has a unique solution 
(see also ref. 12) and that this solution depends continuously on g. Hence, 
the formula 

f = Tg 

defines a continuous operator on (Cb)'. The restriction of T to bounded 
sets is compact, because the derivatives of every solution of (4.5), (4.2), and 
(4.3a) or (4.3b) are uniformly bounded if g is from a bounded set. 

We now use a theorem due to Schaefer (2~ to conclude that T has a 
fixed point. 

Suppose that f = 2 T f  for some 2, 0 < 2 <  1. Then, of course, f E  
( C b, + )~ and 

. d f i  + 7f~p(f) = 2Ci(f)  (4.6) 
3, dx 

f ( 0 )  = 2~/ if G > 0 (4.7) 

and, for either of the boundary conditions (4.3a) or (4.3b), 

j ( f ) ( d )  >7 0 (4.8) 

The definition of C~(f) and the conservation equations (2.5) and (2.6) give 

dj/dx = ( 2 -  1) ?p2 (4.9) 

apl /ax= ()t - 1) 7Jfl (4.10) 

From the inequalities f12/> 0 and 2 < 1 and (4.9) we see that j (x)  (which is 
of course not constant for 2 -r 1) is non-increasing. Hence, 

j (x)  >1 j(d) >10 
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From (4.10), it follows that Pl is nonincreasing, i.e., 

pl(x) <~ pl(0) = p~- (0) --k Pi- (0) 

~< p~- (0) + c z j - ( 0 )  (4.11) 

Since j(x) is nonnegative, we also have 

O<.j (O)=j+(O)- j - (O)  

so that j - (0) ~< j + (0). This and (4.11 ) imply 

pl(x) <<. 2c2 j + (0) (4.12) 

Condition (4.12) is an a priori bound on all solutions of f = 2 T f  The 
Schaefer theorem then implies that f = 2Tf  has a solution for 2 = 1. This is 
the sotution we were looking for. That this solution is bounded indepen- 
dently of d is an immediate consequence of (4.12). 

Remark. The theorem makes no statement about uniqueness. We 
know that the solution is unique for sufficiently small d, (12) but this 
uniqueness may be lost for large d. 

5. T H E  M A I N  T H E O R E M  

We briefly remind the reader of the assumptions made for the models 
under consideration. They are (1) that all ~i r  and (2) that the mass, 
momentum, and energy fluxes are invariants. M will again denote the 
Maxwellian manifold associated with certain fixed values of the invariants. 
Given these assumptions, we prove the following result: 

T h e o r e m  5.1. There are bounded nonnegative solutions f o r  (2.1), 
(2.3) such that l i m x ~ d i s t ( f ( x ) , M ) = O ,  where M is the Maxwellian 
manifold associated with the invariants o f f  If there are only finitely many 
points.in M, then there is a Maxwetlian in M such that limx ~ ~ f (x )  = m. 

~Proof. Choose either of the problems (4.1)-(4.3a), or (4.3b). Then 
choose a sequence (dn) of values of d increasing to infinity, and let (fn) be 
the sequence of solutions for the dn given by Theorem 4.1. For convenience, 
we extend f~, as the constant f~(dn) for x > d~. 

By Theorem4.1, the family (fn) is bounded, and because of the 
boundedness of (d/dx)fi~, it is actually equicontinuous. By using a 
standard diagonal trick, we can extract a subsequence (f,k) which 
converges uniformly on every bounded interval and pointwise on [0, m). 
The limit f = ( f )  is a solution of (2.1), and satisfies the boundary 

822/52/3-4-24 
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condition at x = 0 and j(f)>>. O. It remains to show that f approaches the 
Maxwellian manifold as x ~ oo. To this end, we take advantage of the 
H-theorem. 

The function f satisfies (d/dx)/1If ](x)  ~< 0. The function f is bounded 
because all the functions fn are uniformly bounded, and so / 1 I f  ](x)  is 
bounded below. H e n c e / t [ f ] ( ~ )  := limx_~ o~ H [ f ] ( x )  exists, and in fact 

ffI[f](O)- ffI[f](oo )= - fo  { d  ffI[f](x)} dx 

Therefore, (d/dx)/~[f](x)is Ll-integrable, and so we can find a sequence 
xk ~ ~ such that (d/dx) FI[f](xk) ~ 0 as k ~ ~ .  The sequence (f(xk)) is 
bounded, so the Bolzano-Weierstrass theorem allows us to extract a sub- 
sequence [which we again denote by (xk)] such that lim~_~o~ f(Xk)= g 
exists. Now recall that 

, f k f , ,  , 
/ ~ [ f ] ( x k )  = ~ A~/(f~fl -- f i f j )m-~T txk) 

i,j,k,l J i J j  
(5.1) 

Since 

(fkft -- f J j )  in fkf t  (xk)<~ O 
f, fj 

the limit of this expression as k ~ ov must exist and vanish if A~. t ~ 0. We 
conclude that 

. . . .  A f ,  
lim ( f k f i - j i j j ) m ~ i f j ( x k )  

=(gkgt--g,&) lim In fkft 
k ~ ~ f ~ f j  ( x k )  = 0 

whenever A~/r  0, and this is only possible when g is Maxwellian. Clearly, g 
has the invariant fluxes o f f  

Given that M is the Maxwellian manifold associated with the fluxes of 
f,  it remains to show that 

lim dist(f(yk), M )  = 0 
k ~  

for every other sequence (Yk) with Yk ~ oo. Suppose that this is false; we 
can then find numbers e t > 0 and 6 > 0 and an increasing sequence (Yk) 
with lYk+l --Ykl > e l  and dist(f(yk), M)>6 for all k. 
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Because the derivative o f f  is uniformly bounded, there is an e2 > 0, 
~;2 < ~1/2, and a sequence of intervals A~ of length e2 centered at Yk such 
that dist(f(x),  M ) >  3/2 for all x e Ak and all k. 

Let A k = [a k, bk] and consider the entropy flux into Ak: With h(y)= 
y In y for y > 0, h(y) = 0 for y = 0, define 

~bin(Zlk) ~- 2 + ~ih(ak) -4- ~- I~el h(bk) 

~out(Ak) = Z + ~ih(bk) + ~.- I~g[ h(ag) 

~(Zlk) = ~ in(Ak)  - -  ~out(Z~k) 

The decrease of H [ f ] ( x )  easily implies that 
argument, we the use the following result: 

~b(Ak)~>0. To finish the 

t .emma 5.2. The assertion dist(f(x),M)>6/2 for xeA~ implies 
that there is a constant 2 > 0 such that 

~(Ak)>~,~ (5.2) 

for all k. 

Before we prove the lemma, we finish the proof of the theorem. 
Observe that (~(Ak)=FI[f](ak)--ffI[f](bk). Since /T[-f](x)  is 

decreasing and ~ (d/dx) ffI[f](x)x < 0% it follows that 

Y~ ~ ( ~ 1  < ~ (5.3) 
k 

(5.3) contradicts (5.2), and our proof is complete. 

If the Maxwellian manifold M consists of at most finitely many points, 
dist(f(x),M) can only converge to zero as x ~ oo if f ac tua l l y  converges to 
a Maxwellian. 

Proof of Lemma 5.2. The proof is again by contradiction. Assuming 
that the assertion of the lemma is false, we can find a subsequence of the 
intervals (A~) [again denoted by (Ak)] such that limk~ ~ ~b(Ak)= 0. Since 

f ,kd 
r = -- k ~xx/~[ f ] (x)  dx 

there must be numbers Zk ~ dk such that (d/dx) ffI[f](Zk) ~ 0 as k --* oe. As 
before, this implies that f(zk) approaches the Maxwellian manifold, and 
this is in contradiction to the hypothesis of the lemma. 
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